资源类型

期刊论文 463

会议视频 2

会议专题 1

年份

2024 2

2023 45

2022 33

2021 54

2020 34

2019 30

2018 28

2017 31

2016 30

2015 23

2014 23

2013 16

2012 19

2011 15

2010 18

2009 13

2008 9

2007 10

2006 4

2005 4

展开 ︾

关键词

N-糖基化 3

S-N曲线 3

免疫球蛋白 G 2

免疫球蛋白G 2

糖基化 2

&alpha 1

3D打印 1

N-糖组 1

N-聚糖模型 1

N-糖基化 1

N-糖链 1

CCS 1

CO2 加氢 1

CO2-ECBM 1

COVID-19 1

Cuk矩阵变换器 1

F-N图 1

FE-SEA混合法 1

Fe、Co、Ru 碳化物 1

展开 ︾

检索范围:

排序: 展示方式:

The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1366-2

摘要:

•Bacterially-mediated coupled N and Fe processes examined in incubation experiments.

关键词: Denitrification     N2O emission     Fe(II) oxidation     Fe/N ratio     Fe minerals    

Floret-like FeN nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 525-535 doi: 10.1007/s11705-022-2232-5

摘要: Fe–Nx nanoparticles-embedded porous carbons with a desirable superstructure have attracted immense attention as promising catalysts for electrochemical oxygen reduction reaction. Herein, we employed Fe-coordinated covalent triazine polymer for the fabrication of Fe–Nx nanoparticle-embedded porous carbon nanoflorets (Fe/N@CNFs) employing a hypersaline-confinement-conversion strategy. Presence of tailored N types within the covalent triazine polymer interwork in high proportions contributes to the generation of Fe/N coordination and subsequent Fe–Nx nanoparticles. Owing to the utilization of NaCl crystals, the resultant Fe/N@CNF-800 which was generated by pyrolysis at 800 °C showed nanoflower structure and large specific surface area, which remarkably suppressed the agglomeration of high catalytic active sites. As expect, the Fe/N@CNF-800 exhibited unexpected oxygen reduction reaction catalytic performance with an ultrahigh half-wave potential (0.89 V vs. reversible hydrogen electrode), a dominant 4e transfer approach and great cycle stability (> 92% after 100000 s). As a demonstration, the Fe/N-PCNF-800-assembled zinc–air battery delivered a high open circuit voltage of 1.51 V, a maximum peak power density of 164 mW·cm–2, as well as eminent rate performance, surpassing those of commercial Pt/C. This contribution offers a valuable avenue to exploit efficient metal nanoparticles-based carbon catalysts towards energy-related electrocatalytic reactions and beyond.

关键词: Fe–Nx nanoparticles     hypersaline-confinement conversion     floret-like carbon     covalent triazine polymers     oxygen reduction reaction    

Enhancing the efficiency of nitrogen removing bacterial population to a wide range of C:N ratio (1.5:1 to 14:1) for simultaneous C & N removal

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1522-y

摘要:

• Simultaneous C & N removal in Methammox occurs at wide C:N ratio.

关键词: Methanogens     Biological Nitrogen Removal (BNR)     Simultaneous     Methammox     C:N ratio    

Bamboo-like -doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 498-510 doi: 10.1007/s11705-021-2082-6

摘要: The electrochemical conversion of CO2-H2O into CO-H2 using renewable energy is a promising technique for clean syngas production. Low-cost electrocatalysts to produce tunable syngas with a potential-independent CO/H2 ratio are highly desired. Herein, a series of N-doped carbon nanotubes encapsulating binary alloy nanoparticles (MxNi-NCNT, M= Fe, Co) were successfully fabricated through the co-pyrolysis of melamine and metal precursors. The MxNi-NCNT samples exhibited bamboo-like nanotubular structures with a large specific surface area and high degree of graphitization. Their electrocatalytic performance for syngas production can be tuned by changing the alloy compositions and modifying the electronic structure of the carbon nanotube through the encapsulated metal nanoparticles. Consequently, syngas with a wide range of CO/H2 ratios, from 0.5:1 to 3.4:1, can be produced on MxNi-NCNT. More importantly, stable CO/H2 ratios of 2:1 and 1.5:1, corresponding to the ratio to produce biofuels by syngas fermentation, could be realized on Co1Ni-NCNT and Co2Ni-NCNT, respectively, over a potential window of –0.8 to –1.2 V versus the reversible hydrogen electrode. Our work provides an approach to develop low-cost and potential-independent electrocatalysts to effectively produce syngas with an adjustable CO/H2 ratio from electrochemical CO2 reduction.

关键词: electrochemical reduction of CO2     syngas     N-doped carbon nanotubes     encapsulated alloy nanoparticles     CO/H2 ratio    

New insight into effect of potential on degradation of Fe-N-C catalyst for ORR

Yanyan GAO, Manman QI, Liang HE, Haiping CHEN, Wenzhe LUO, Ming HOU, Zhigang SHAO

《能源前沿(英文)》 2021年 第15卷 第2期   页码 421-430 doi: 10.1007/s11708-021-0727-2

摘要: In recent years, Fe-N-C catalyst is particularly attractive due to its high oxygen reduction reaction (ORR) activity and low cost for proton exchange membrane fuel cells (PEMFCs). However, the durability problems still pose challenge to the application of Fe-N-C catalyst. Although considerable work has been done to investigate the degradation mechanisms of Fe-N-C catalyst, most of them are simply focused on the active-site decay, the carbon oxidation, and the demetalation problems. In fact, the 2e pathway in the ORR process of Fe-N-C catalyst would result in the formation of H O , which is proved to be a key degradation source. In this paper, a new insight into the effect of potential on degradation of Fe-N-C catalyst was provided by quantifying the H O intermediate. In this case, stability tests were conducted by the potential-static method in O saturated 0.1 mol/L HClO . During the tests, H O was quantified by rotating ring disk electrode (RRDE). The results show that compared with the loading voltage of 0.4 V, 0.8 V, and 1.0 V, the catalysts being kept at 0.6 V exhibit a highest H O yield. It is found that it is the combined effect of electrochemical oxidation and chemical oxidation (by aggressive radicals like H O /radicals) that triggered the highest H O release rate, with the latter as the major cause.

关键词: proton exchange membrane fuel cells (PEMFCs)     oxygen reduction reaction (ORR)     Fe-N-C catalyst     potential     H2O2     degradation    

Influence of Fe on electrocatalytic activity of iron-nitrogen-doped carbon materials toward oxygen reduction

Lin LI, Cehuang FU, Shuiyun SHEN, Fangling JIANG, Guanghua WEI, Junliang ZHANG

《能源前沿(英文)》 2022年 第16卷 第5期   页码 812-821 doi: 10.1007/s11708-020-0669-0

摘要: The development of highly active nitrogen-doped carbon-based transition metal (M-N-C) compounds for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) greatly helps reduce fuel cell cost, thus rapidly promoting their commercial applications. Among different M-N-C electrocatalysts, the series of Fe-N-C materials are highly favored because of their high ORR activity. However, there remains a debate on the effect of Fe, and rare investigations focus on the influence of Fe addition in the second heat treatment usually performed after acid leaching in the catalyst synthesis. It is thus very critical to explore the influences of Fe on the ORR electrocatalytic activity, which will, in turn, guide the design of Fe-N-C materials with enhanced performance. Herein, a series of Fe-N-C electrocatalysts are synthesize and the influence of Fe on the ORR activity are speculated both experimentally and theoretically. It is deduced that the active site lies in the structure of Fe-N , accompanied with the addition of appropriate Fe, and the number of active sites increases without the occurrence of agglomeration particles. Moreover, it is speculated that Fe plays an important role in stabilizing N as well as constituting active sites in the second pyrolyzing process.

关键词: oxygen reduction reaction     Fe-N-C     active sites     Fe addition     second heat treatment    

Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated

Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li

《环境科学与工程前沿(英文)》 2018年 第12卷 第6期 doi: 10.1007/s11783-018-1047-6

摘要:

MABR exhibits excellent TN removal performance for treating ROC with low C/N ratio.

Operating conditions should be properly controlled to achieve optimal TN removal.

Denitrifying bacteria and NOB are proved notably inhibited by high salinity stress.

The TN removal rate remains over 70% when the NaCl addition amount is below 20 g/L.

关键词: Membrane-aerated biofilm reactor (MABR)     Salinity     Total nitrogen     Reverse osmosis concentrate    

滇池北部重点水域蓝绿藻季节性变动下水体N∶P比值变化研究

何锋,段昌群,杜劲松,韩亚平,郭艳英,潘珉,宋任彬

《中国工程科学》 2010年 第12卷 第6期   页码 94-98

摘要: 调查研究了蓝藻生物量季节性变动规律,对区域原水(不过滤)和净水(过滤了藻类)中N和P含量的变化也进行了监测。目的是研究蓝藻季节性消长对水体N和P含量的影响。通过分析,水体N和P随蓝藻生物量呈现相应变动规律,水体叶绿素和TN,TP之间都呈现正相关关系,相关系数分别为0.955 和0.952 。利用生态化学计量学分析,蓝藻和水体中N∶P比值没有固定性,表明蓝藻没有表现出强烈的化学计量特征,而蓝藻的季节性变动也没有导致本区域水体具化学计量特性。通过分析滇池水体N∶P比值与蓝藻生物量变化之间相关关系,相关系数为-0.308,表明富营养化水体中N∶P比率对蓝藻生物量直接影响不大。因此,只有通过降低水体中N和P的浓度,才能控制蓝藻的爆发。

关键词: 滇池     蓝绿藻     N∶P比值     变化     生态化学计量学    

Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater

Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng

《环境科学与工程前沿(英文)》 2021年 第15卷 第2期 doi: 10.1007/s11783-020-1318-x

摘要: Abstract • Sludge fermentation liquid addition resulted in a high NAR of 97.4%. • Extra NH4+-N from SFL was removed by anammox in anoxic phase. • Nitrogen removal efficiency of 92.51% was achieved in municipal wastewater. • The novel system could efficiently treat low COD/N municipal wastewater. Biological nitrogen removal of wastewater with low COD/N ratio could be enhanced by the addition of wasted sludge fermentation liquid (SFL), but the performance is usually limited by the introducing ammonium. In this study, the process of using SFL was successfully improved by involving anammox process. Real municipal wastewater with a low C/N ratio of 2.8–3.4 was treated in a sequencing batch reactor (SBR). The SBR was operated under anaerobic-aerobic-anoxic (AOA) mode and excess SFL was added into the anoxic phase. Stable short-cut nitrification was achieved after 46d and then anammox sludge was inoculated. In the stable period, effluent total inorganic nitrogen (TIN) was less than 4.3 mg/L with removal efficiency of 92.3%. Further analysis suggests that anammox bacteria, mainly affiliated with Candidatus_Kuenenia, successfully reduced the external ammonia from the SFL and contributed approximately 28%–43% to TIN removal. Overall, this study suggests anammox could be combined with SFL addition, resulting in a stable enhanced nitrogen biological removal.

关键词: Sludge fermentation liquid     Municipal wastewater     Advanced nitrogen removal     Short-cut nitrification     Partial anammox    

Characterization of CANON reactor performance and microbial community shifts with elevated COD/N ratios

Yao Zhang, Yayi Wang, Yuan Yan, Haicheng Han, Min Wu

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1095-6

摘要:

COD/N at low ratios (0–0.82) improved N removals of CANON.

CANON performance decreased after COD/N up to 0.82.

The relative abundance of AOB decreased continuously with increasing COD/N.

AOB outcompeted at a high COD load led to CANON failure.

The relative abundance of AnAOB decreased and increased with increasing COD/N.

关键词: CANON process     COD/N ratio     Anammox     Ammonia oxidizing bacteria     Aerobic heterotrophic bacteria    

Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method

Zilin HUANG,Gang WANG,Shaopeng WEI,Changhong LI,Yiming RONG

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 242-249 doi: 10.1007/s11465-016-0397-7

摘要:

Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved by using a quantitative method. In this work, volumetric defect ratio was proposed as the criterion to describe the integrity of forming quality for cladding layers. Laser deposition experiments with FV520B, one of martensitic stainless steels, were designed by using the Taguchi method. Four process variables, namely, laser power (P), scanning speed (Vs), wire feed rate (Vf), and wire current (I), were optimized based on the analysis of signal-to-noise (S/N) ratio. Metallurgic observation of cladding layer was conducted to compare the forming quality and to validate the analysis method. A stable and continuous process with the optimum parameter combination produced uniform microstructure with minimal defects and cracks, which resulted in a good metallurgical bonding interface.

关键词: process optimization     Taguchi method     signal-to-noise (S/N) ratio     volumetric defect ratio     laser hot wire cladding    

Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio

Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1183-7

摘要: CW-Fe allowed a high-performance of NO3‒-N removal at the COD/N ratio of 0. Higher COD/N resulted in lower chem-denitrification and higher bio-denitrification. The application of s-Fe0 contributed to TIN removal in wetland mesocosm. s-Fe0 changed the main denitrifiers in wetland mesocosm. Sponge iron (s-Fe0) is a porous metal with the potential to be an electron donor for denitrification. This study aims to evaluate the feasibility of using s-Fe0 as the substrate of wetland mesocosms. Here, wetland mesocosms with the addition of s-Fe0 particles (CW-Fe) and a blank control group (CW-CK) were established. The NO3‒-N reduction property and water quality parameters (pH, DO, and ORP) were examined at three COD/N ratios (0, 5, and 10). Results showed that the NO3‒-N removal efficiencies were significantly increased by 6.6 to 58.9% in the presence of s-Fe0. NH4+-N was mainly produced by chemical denitrification, and approximately 50% of the NO3‒-N was reduced to NH4+-N, at the COD/ratio of 0. An increase of the influent COD/N ratio resulted in lower chemical denitrification and higher bio-denitrification. Although chemical denitrification mediated by s-Fe0 led to an accumulation of NH4+-N at COD/N ratios of 0 and 5, the TIN removal efficiencies increased by 4.5%‒12.4%. Moreover, the effluent pH, DO, and ORP values showed a significant negative correlation with total Fe and Fe (II) (P<0.01). High-throughput sequencing analysis indicated that Trichococcus (77.2%) was the most abundant microorganism in the CW-Fe mesocosm, while Thauera, Zoogloea, and Herbaspirillum were the primary denitrifying bacteria. The denitrifiers, Simplicispira, Dechloromonas, and Denitratisoma, were the dominant bacteria for CW-CK. This study provides a valuable method and an improved understanding of NO3‒-N reduction characteristics of s-Fe0 in a wetland mesocosm.

关键词: Sponge iron     Wetland mesocosm     Electronic donor     Denitrification     COD/N ratio    

Mechanistic insight into the biofilm formation and process performance of a passive aeration ditch (PAD) for decentralized wastewater treatment

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1494-3

摘要:

• A Passive Aeration Ditch was developed to treat decentralized wastewater.

关键词: Decentralized wastewater     Passive aeration ditch     Biofilm formation     C/N ratio     Salinity     Model simulation    

Inexpensive synthesis of a high-performance Fe

Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim

《化学科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 405-416 doi: 10.1007/s11705-016-1579-x

摘要: A sol-gel technique has been developed for the synthesis of a magnetite-silica-titania (Fe O -SiO -TiO ) tertiary nanocomposite with improved photocatalytic properties based on the use of inexpensive titania and silica precursors. The exceptional photocatalytic activity of the resulting materials was demonstrated by using them to photocatalyze the degradation of methylene blue solution. The best formulation achieved 98% methylene blue degradation. An interesting feature of the present work was the ability to magnetically separate and reuse the catalyst. The efficiency of the catalyst remained high during two reuses. The synthesized nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultra-violet-visible spectroscopy, diffuse reflectance spectroscopy, and thermogravimetric analysis. XRD analysis revealed the formation of multicrystalline systems of cubic magnetite and anatase titania crystals. SEM and TEM characterization revealed well-developed and homogeneously dispersed particles of size less than 15 nm. FTIR spectra confirmed the chemical interaction of titania and silica. It was further noticed that the optical properties of the prepared materials were dependent on the relative contents of their constituent metal oxides.

关键词: sol-gel     photocatalysis     magnetic recovery     TiO2     Fe3O4     SiO2    

Organic nitrogen in PM

Qian ZHANG,Fengkui DUAN,Kebin HE,Yongliang MA,Haiyan LI,Takashi KIMOTO,Aihua ZHENG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1004-1014 doi: 10.1007/s11783-015-0799-5

摘要: Nitrogenous species, as important chemical components in PM , include organic nitrogen (ON) and inorganic nitrogen (IN), both of which have potential effects on human health, climate change and visibility degradation. In this study, we analyzed total nitrogen (TN) by CHN Elemental analyzer and inorganic nitrogen by ion chromatography (IC) respectively to obtain ON by calculating the difference between TN and IN. The results show that the mean ON concentrations in winter and summer are both 2.86 μg·m , ten times higher than other places reported on average. ON contributes about 20%–30% to TN on average in both seasons, presenting higher contribution in summer. N:C ratios are much higher in summer than winter. ON sources or formation were strengthened by heavy PM pollution loads, especially sensitive to sulfate. ON concentrations are higher at night in the both seasons, however with distinguished day and night difference patterns influenced by relative humidity (RH) conditions. In winter, ON concentrations increase with RH on average through low RH values to high RH values. The variations are far larger than the ones caused by day and night difference. However in summer, day and night difference dominates the variations of ON concentrations at low RH values, and RH conditions promote ON concentrations increase significantly only at high RH values. Dust related source and anthropogenic emission related secondary source are identified as important sources for ON. At heavy pollution loads, ON sources are more of secondary formation, possibly strengthened by combination influence of RH and acidity increase.

关键词: organic nitrogen     N:C ratio     secondary     day and night variation     relative humidity (RH)     acidity    

标题 作者 时间 类型 操作

The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The

期刊论文

Floret-like FeN nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer

期刊论文

Enhancing the efficiency of nitrogen removing bacterial population to a wide range of C:N ratio (1.5:1 to 14:1) for simultaneous C & N removal

期刊论文

Bamboo-like -doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of

期刊论文

New insight into effect of potential on degradation of Fe-N-C catalyst for ORR

Yanyan GAO, Manman QI, Liang HE, Haiping CHEN, Wenzhe LUO, Ming HOU, Zhigang SHAO

期刊论文

Influence of Fe on electrocatalytic activity of iron-nitrogen-doped carbon materials toward oxygen reduction

Lin LI, Cehuang FU, Shuiyun SHEN, Fangling JIANG, Guanghua WEI, Junliang ZHANG

期刊论文

Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated

Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li

期刊论文

滇池北部重点水域蓝绿藻季节性变动下水体N∶P比值变化研究

何锋,段昌群,杜劲松,韩亚平,郭艳英,潘珉,宋任彬

期刊论文

Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater

Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng

期刊论文

Characterization of CANON reactor performance and microbial community shifts with elevated COD/N ratios

Yao Zhang, Yayi Wang, Yuan Yan, Haicheng Han, Min Wu

期刊论文

Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method

Zilin HUANG,Gang WANG,Shaopeng WEI,Changhong LI,Yiming RONG

期刊论文

Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio

Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn

期刊论文

Mechanistic insight into the biofilm formation and process performance of a passive aeration ditch (PAD) for decentralized wastewater treatment

期刊论文

Inexpensive synthesis of a high-performance Fe

Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim

期刊论文

Organic nitrogen in PM

Qian ZHANG,Fengkui DUAN,Kebin HE,Yongliang MA,Haiyan LI,Takashi KIMOTO,Aihua ZHENG

期刊论文